化工废水处理要求高,处理难度大,同传统的水处理方法相比,膜技术具有处理效果好、可实现废水的循环利用及回收有用成分等优点。我们以膜技术为核心,对化工废水零排放膜技术集成应用新工艺进行了一系列研究及优化,并在工业上得以应用实践,取得良好成效。
1、化工污水处理中膜技术的应用现状
在电势、浓度、压力的梯度下,利用混合物中各混合成分渗透性存在的差异,将混合物进行分离、提纯和富集是化工污水处理中膜技术应用的主要原理,自二十世纪六十年代初,膜技术被广泛地应用到化工企业的生产中,经过十几年来的不断实践和完善,膜分离技术在污水处理中的应用已逐渐成熟,在分离、浓缩、提纯、净化等多方面体现出了高效性、科学性、有效性和针对性等特征,在各类化工污水处理中表现出来较强的处理优势。而近年来随着工业化建设进程的不断加快,膜分离技术的应用在不断发展,倘若单独依靠其中一种膜技术手段,不仅不能有效地解决当前的污水问题,还有可能造成“膜污染”问题的产生,组合应用不同的膜技术,借助各种膜技术的优势是目前化工工业生产的重要发展方向。
2、化工废水处理中膜技术应用分析
2.1 浓盐水膜浓缩处理工艺
浓盐水的膜浓缩工艺,目前常用的有高效反渗透膜浓缩(HERO)、碟管式反渗透(DTRO)、电渗析(ED)等。HERO是一种主要用于预浓缩的热力蒸发系统的设施,其过程主要是先对来水进行软化除硬、脱气、加碱后,在高pH环境中,进入RO膜进行膜浓缩。运行过程中,RO膜处于连续清洗状态。碟管式反渗透(DTRO)是一种特种分离膜,其反渗透膜片和水力导流盘叠放在一起,相比于传统的反渗透,DTRO具有更宽的通道、更短的流程和高速湍流的特点,它可以延缓膜堵塞问题的出现,**膜的使用寿命。电渗析(ED)是在直流电场的作用下,以电位差卫推动力,利用例子交换膜对溶液中的阴阳离子的选择性,把电解质从溶液中分离出来,终实现溶液的淡化和提纯。
2.2 超滤膜分离技术
当需要将溶液与气体进行有效分离或者提纯处理时,此时可采用超滤膜技术。该技术选用一种透过力较好的薄膜作为分离介质,整个膜壁上布满了各种微小孔隙,待处理液在特定的压力环境下可以有效通过膜的一侧,溶剂与一些分子颗粒较小的溶质可以通过膜壁得到滤出液,而分子较大的物质则被膜挡住,终达到分离的效果。超滤膜分离是一个动态的分离过程,体积相对较大的物质会被膜有效隔离,并随着浓缩液慢慢流出膜组件,该类膜在通过性方面处理较好,比较不容易被堵塞,可以长期使用。整个过滤过程可以在低压以及常温环境下进行,节能效果较好。
2.3 反渗透膜技术
化工废水的资源化处理将以淡水资源开发和保护自然环境为目标。除了纯水制备和脱盐,废水处理是反渗透膜技术实际应用多的方面,大部分是对化工废水实施深度处理,通常还要引入其他技术工艺,主要为预处理技术。近期,科威特新建一处规模为17418m3/h的反渗透膜系统,专门用在废水和污水的处理与回用。反渗透膜技术还能用在无机物处理与有机物处理,在石油化工、制药和炼钢等领域中均能有所应用。
在化工生产和环境保护领域利用反渗透膜技术时,往往是借助电荷斥力与空间排阻来起到移除有害物质的作用,但化工废水往往存在很多杂质,在反渗透膜的表面容易产生沉积层,导致反渗透膜自身性能明显下降,膜污染的处理至关重要,需要引起相关人员的高度重视。无机盐为常见污染物,针对这一方面产生机理进行的研究有很多,集中于压力与错流流率等方面,还包括粗糙度以及孔隙率等对膜造成的影响,但也有很多学者提出,污染的过程会受到材料等方面因素的实际影响。对膜进行剖析是确定膜污染产生原因的有效方法,对污染以后膜的深入分析,确定污染产生原因。如果污染的过程十分复杂,而又缺乏相关了解,该技术将显得十分重要。在实际工作中,可借助在线超声波对反渗透膜进行振荡,以此有效抑制污染,使渗透通量大幅升高,但截留率却能保持不变。由此可以看出,超声去污具有较强的潜力,值得在今后加大力度进行分析研究和推广应用。
由于制药废水中的有机物浓度比较高、降解难度大,水质成份复杂,对于微生物的毒害作用比较强,废水处理难度比较大,如果其没有到达排放标准,则会对水环境造成严重污染。亟需对制药废水处理技术进行深入研究。
1、制药废水处理技术简介
制药工业废水的化学组成比较复杂,并且含有大量的有害物质,是水污染十分重要的组成部分。在制药工业废水处理中,常见处理方法包括物化法、生物法、组合工艺等等。其中,物化法包括吹脱法、混凝沉淀法、吸附法以及气浮法;生物法包括光合细菌处理法(Pss)、普通活性污泥法、上流式厌氧污泥床(UASB)法、序批式间歇活性污泥法(SBR法)、复合式厌氧反应器、生物接触氧化法;组合工艺的类型也有很多种,比如气浮-水解-好氧工艺、电解法和SBR法结合工艺、絮凝沉淀+水解酸化+SBR工艺、复合式厌氧-好氧反应器工艺等。
2、厌氧-SBR工艺在制药废水处理中的应用优势
SBR废水处理工艺可以实现连续进水,污水处理效率比较高。应用成本比较低,可有效去除含有高浓度CODCr、氨氮、BOD5等的污水,应用范围广泛。
“厌氧+SBR”组合工艺的应用优势包括以下几点:
(1)工艺稳定性强。
通过应用“厌氧+SBR”污水处理工艺,在污水处理中,厌氧水解池可以对污水处理量进行调节,避免由于进水水质波动或者进水量超标对水质处理效果造成不良影响,进而**废水的可生化性。通过应用厌氧水解池,污水处理系统类似完全混合式,可避免废水中的CODCr浓度不断累积或者产生毒性物质。
(2)污水处理系统设备利用率高。
在污水处理中,通过将曝气池以及二沉池合建,可以形成综合性废水处理构筑物,能够保证泥水分离效果的基础上,尽量**曝气容积比,由于主曝气池可以实现连续曝气,能够有效增加曝气容积,在大程度上**曝气装置的利用率。主曝气池可以实现进水连续性,不需要设置闸阀及自控装置。
(3)系统的灵活性。
“厌氧+SBR”组合工艺中,对于厌氧水解池的运行状态和SBR池的运转周期,可根据进出水的水量、水质变化进行调整,保证系统可处于佳运行工况。除此以外,在污水处理过程中,对于曝气时间以及曝气强度,可根据脱氮除磷要求进行调节,以此创造缺氧环境。
(4)系统应用成本比较低。
SBR系统是由浮筒搅拌器、空气堰、大**低扬程过墙式回流泵等设备共同组成,系统中各个功能分区可有效结合利用,配合应用自动化控制系统,可实现系统灵活、集约设计。不但实现连续进出水,不需要设置大量的阀门、泵以及连接管,自动化水平比较高,系统应用成本低。
3、厌氧-SBR工艺在制药废水处理中的应用实例
3.1 制药废水来源
某工业区二级污水处理厂的污水来源主要为混合工业废水,园区中某抗菌素厂所生产的药物类型有硫酸粘杆菌素、丙古二肽、硫酸奈替米星、利福平、帕司异烟肼等等,还有一抗生素厂生产硫酸庆大霉素、盐酸金霉素等等。2个制药企业均采用发酵制药方式,制药生产所形成的污水中,CODCr含量比较高,废水降解难度较大。